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Approximate Linear Phase Hilbert TransformerLjiljana D. Mili�c and Miroslav D. LutovacAbstract|The IIR realizations of the Hilbert transformerrequire less computations than FIR realizations, but themain disadvantage of the minimum phase IIR realization isthe nonlinearity of the phase characteristic. In this paper,we show that using allpass IIR sub�lters from the minimalphase solution it is possible to design an IIR Hilbert trans-former which exhibits simultaneously approximate constantamplitude response and approximate linear phase.Keywords| IIR �lter, two{pass �ltering, Hilbert trans-former, halfband �lter, linear phaseI. IntroductionFor single-sideband transmission systems, it is desirableto develop an analytic signal from a real signal x[n]. Theanalytic signal, y[n] = Re(y[n]) + jIm(y[n]), can be gener-ated by employing a Hilbert transformer.The basic noncausal system for the generation of theanalytic signal obtains the real part of y[n] to be equal tothe real signal x[n], i.e. Re(y[n]) = x[n] (Fig. 1).The basic causal system di�ers from the noncausal onlyby a time shift of m samples, i.e. Re(y[n]) = x[n�m]. Thesystem can be with ideal or approximately linear phase.The minimumphase system is usually realized as an IIRphase splitter consisting of two allpass sub�lters, Fig. 2[1]. The outputs of this IIR complex �lter form the Hilberttransform pair.Usually, the IIR complex �lter exhibits an approximatelyat amplitude response followed by a highly nonlinearphase response. In this paper, we propose a new techniquefor the design of causal IIR Hilbert transformer which ap-proximates simultaneously a constant amplitude responseand a linear phase response.II. Hilbert TransformerThe Hilbert transform is a set of mathematical equa-tions relating the real and imaginary part, or the magni-tude and phase of the Fourier transform of a signal. Basedon the properties of the discrete Hilbert transform, an idealHilbert transformer is de�ned as a DTLTI system with thefrequency responseHHT (ej2�f ) = � �j; 0 � f < 12+j; �12 � f < 0 (1)An ideal Hilbert transformer is non-causal. Any realizationthat approximates the ideal Hilbert transformer is referredto as a Hilbert transformer.Instead of conventional implementation of IIR Hilberttransformers, we propose a new approach based on the cas-Lj. D. Mili�c is with Mihajlo Pupin Institute, Volgina 15, 11050Belgrade, Yugoslavia, E-mail: emilicl@ubbg.etf.bg.ac.yuM. D. Lutovac is with IRITEL, Telecommunications and Electron-ics Institute, Batajni�cki put 23, 11080 Belgrade, Yugoslavia, E-mail:lutovac@iritel.bg.ac.yu

x[n]
 

Hht(z) Im(y[n])

Re(y[n])Fig. 1. Noncausal Hilbert transformer.
x[n]

 

Ha(z)

 

Hb(z) Im(y[n])

Re(y[n])

 Fig. 2. Minimum phase Hilbert transformer: parallel connection oftwo sub�lters, Ha(z) and Hb(z).cade connection of the causal and noncausal allpass sub�l-ters, Fig. 3. Hence a noncausal Hilbert transformer can berealized using a complex �lterHCF (z) = 1 + jHa(z)Hb(1z ) (2)where Ha(z) and Hb(z) are causal allpass sub�ltersHCF �ej!� = 12 �1 + jej'a(!)e�j'b(!)�Ha �ej!� = ej'a(!)Hb �ej!� = ej'b(!) (3)i.e. the magnitude responses are characterized by��HCF �ej!��� � 1, ��Ha �ej!��� = 1 and ��Hb �ej!��� = 1. Sub-stituting j = ej �2 into (3), we �ndHCF �ej!� = 12 �1 + ej('a(!)�'b(!)��2 )� (4)
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Re(y[n])Fig. 4. Two-pass �ltering Hilbert transformer: cascade connection of two sub�lters, Ha(z) and Hb(z) and two LIFO registers.The frequency response can be expressed as a productof the amplitude function A(!) and the exponential factorej	(!) HCF �ej!� = A(!)ej	(!) (5)A(!) = cos (	 (!))	 (!) = 'a (!)� 'b (!)� �22 (6)where 	 (!) is the phase response. The magnitude re-sponse, ��HCF �ej!���, is��HCF �ej!��� = jA(!)j = jcos (	 (!))j (7)The passband is obtained for ��HCF �ej!��� � 1, i.e. forcos (	 (!)) � 1 or 	 (!) � 0, while ��HCF �ej!��� � 0, orcos (	 (!)) � 0, or 	 (!) � �=2 gives a stopband.Usually, the speci�cation is given by the minimal stop-band attenuation Aa and the maximal passband variationAp A(!) = �20 log10 jA(!)j0 � Apassband � ApAa � Astopband (8)The phase response variation in the passband and stopbandis 	 (!) = cos�1 �10�A(!)=20��	passbandjmax = cos�1 �10�Ap=20��	stopbandjmax = �2 � cos�1 �10�Aa=20� (9)If the phase response variation is required, the attenuationsAp and Aa can be calculatedA(!) = �20 log10 jcos (	 (!))jAp = �20 log10 �cos ��	passbandjmax��Aa = �20 log10 �cos ��2 � �	stopbandjmax�� (10)Therefore, an equalripple behavior of the amplitude re-sponse produces simultaneously an equalripple behavior ofthe phase response and vice versa. This achievement makesthe main advantage of the proposed method.III. Two-pass filteringConsider a �nite input sequence x[n] of length L andassume that we may process that sequence o�-line. We

process the sequence x[n], by an IIR �lter with the trans-fer function Ha(z), processing all samples in the forwarddirection from x[1] to x[L]. We assume that the �lter isstable; theoretically, the �ltered sequence v[k] tends to be-come zero after in�nite number of operations. Practically,after a �nite number of operations the quantization e�ectsalways make the output sequence to become constant, or toexhibit certain type of oscillations. Therefore, after some�nite number of operations, say L + K, we can stop �l-tering. Therefore, we assume that the sequence v[k] is oflength L+K.The sequence v[k] can be now processed in the reverseddirection from v[K + L] to v[1], by the second IIR �lterwith the transfer function Hb(z). After a �nite numberof operations, say J , the quantization mostly a�ects theoutput sequence w[n] and we stop �ltering. Therefore, thelength of the sequence w[n] is L+K+J . The output signaly[n] is the reversed sequence w[n], i.e. y[1] = w[L+K+J ],: : :, y[L + K + J ] = w[1]. This way, we �nd the �lteredsequence of the noncausal sub�lter Hb(1=z), but we makeuse of the causal �lter Hb(z).A realization of the approximate linear phase Hilberttransformer is shown in Fig. 4. The LIFO (Last-In-First-Out) register is of length L +K + J .IV. Realization of approximate linear phaseHilbert transformerThe poles pi of the Hilbert transformer transfer functionHCF (ej2�f ) are placed on the real axis of the complex zplane [1], [2]. Hence, the allpass sub�lters Ha(z) and Hb(z)are determined byHa(z) = (n+1)=2Yi=[(n+7)=4] �i � z�21� �iz�2 ; �i > 0 (11)Hb(z) = z�1 [(n+1)=4]Yi=3 �i � z�21� �iz�2 ; �i > 0 (12)For Ha(z) and Hb(z) implemented by the cascade con-nection of a single �rst-order and the second-order allpasssections, we have:	 (!) = 12 (n+1)=2Xi=1 �'i (!) (13)
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Ha(z)Fig. 5. Block diagram of Ha(z).
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Hb(z)Fig. 6. Block diagram of Hb(z).where 'i (!) is the phase response of the ith section, andsign + is for the sub�lter a while sign � is for the sub�lterb. The phase response of the ith section is'i (!) = � arctan ��1 + �2i � sin(2!)2�i � (1 + �2i ) cos(2!)! (14)and the group delay of the ith section is�i(!) = 2 �1� �2i �1 + �2i � 2 �i cos(2!) (15)The group delay of the approximate linear phase Hilberttransformer is� (!) =Xi � 2 �1� �2i �1 + �2i � 2 �i cos(2!) (16)where the sign + is for the sub�lter a while sign � is forthe sub�lter b.The maximal value of the group delay of the ith sectionis �i(!)jmax = �i(0) = 2 1 + �i1� �i (17)and it occurs at ! = 0.V. Design of Hilbert transformerThe Hilbert transformer can be speci�ed by the lowerstopband edge frequency, FHa, and the minimumstopbandattenuation, Aa, i.e. SH = fFHa; Aag. The correspondinghalf-band �lter has the speci�cation S = fFa; Aag withFa = FHa� 14 . Next, the coe�cients of the half-band �lterare calculated to meet S = fFa; Aag. If the coe�cientsof the half-band �lter are �i, then the coe�cients of theHilbert transformer are equal to ��i. The procedure forthe calculation of the coe�cients �i and the realization ofthe sub�lters was presented in [2], [3]. The realizations of
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Fig. 7. Attenuation of complex �lter.
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Fig. 8. Phase di�erence of complex �lter.allpass sub�lters Ha(z) and Hb(z) are shown in Figs. 5 and6. The attenuation of the approximate linear phase 9th-order complex �lter is shown in Fig. 7. The phase responseand the variation of the group delay of the complex �lterare shown in Figs. 8 and 9.Software implementation is tested in MATLAB. Thephase response is displayed in Fig. 10. Fig. 11 presents theimpulse response of the Hilbert transformer. The attenua-tion and the group delay variation is the same as shown inFigs. 7 and 9.The attenuation characteristics of IIR and FIR Hilberttransformer are compared in Fig. 12. The FIRHilbert transformer is calculated using MATLAB program(remez(52,[0.05 0.95],[1 1],'Hilbert')). The FIRrealization require 26 multipliers while IIR realization, pro-posed in this paper, requires only 4 multipliers.It should be noticed that Ha(z) can be used instead ofHb(z) and vice versa. Also, the delay z�1 in Hb(z) can beomitted; in that case the delay in the real branch can bereduced by 1.The real-time approximate linear phase IIR Hilbert
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Fig. 9. Group delay variation of Hilbert transformer.
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fFig. 10. Phase response of Hilbert transformer.transformer can be implemented using Powell and Chau[4] method and the time reversing technique [5].VI. ConclusionIn this paper, we propose a new IIR realization of theHilbert transformer which exhibits simultaneously approx-imate constant amplitude response and approximate linearphase response. The procedure for the calculation of thecoe�cients is based on the procedure for designing ellipticIIR halfband �lters. The real part of the analytic signal isobtained by a time shift of m samples. The imaginary partof the analytic signal is �ltered sequence of the cascadedconnection of a causal allpass IIR sub�lter and a noncausalallpass IIR sub�lter. The noncausal IIR sub�lter is imple-mented employing IIR causal sub�lter and two LIFO reg-isters. We use two-pass �ltering technique for sequencesthat we may process o�-line. The real-time IIR Hilberttransformer, proposed in this paper, can be implementedusing Powell and Chau method.References[1] H. W. Sch�u�ler and P. Ste�en, \Halfband �lters and Hilberttransformers," Circuits Systems Signals Processing, vol. 17, no.2, pp. 137{164, Feb. 1998.
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Fig. 11. Impulse response: Re(y[n])= x[n] - solid line, Im(y[n]) -dotted line.
−0.5 0 0.5

0

20

40

60

at
te

nu
at

io
n 

(d
B

)

f

0 0.1 0.2 0.3 0.4

−6

−5.9

−5.8

−5.7

at
te

nu
at

io
n 

(d
B

)
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