

Everything you always wanted to know about the IC-R10 that
isn't in the manual.
..

by Bruce A. Pope

�Contents:

CI-V Hacking...............................2

Jack Pinouts...............................3

.ICF cloning software data format..........4

IC-R10 Memory Map.........................23

CI-V cloning
 data frame format............25

Modification
s.............................28

Appendix....
..............................2
9
�CI-V Hacking the R-10

Hardware

PC Cloning:

Icom's OPC-478 "PC cloning cable" is nothing more than a CI-V level converter with different pinouts.
The CSR-10 Cloning software has encrypted data files, but the data that is streamed to and from the radio during cloning operations is standard CI-V formatted data.

1) Cloning is possible with the OPC-478 plugged into the CI-V jack if the pins are swapped.
2) Cloning is possible with a standard CI-V level converter into the CI-V port on the R-10.
3) Cloning can take place on the speaker jack with a standard CI-V level converter and a pin adaptor.

Software control:

1) OPC-478 functions with CI-V software if plugged into the speaker jack.
2) OPC-478 does not function when plugged into the CI-V jack.

Reason: Icom swapped the pinouts on their stereo plugs.

CI-V Interface:

1) The standard CI-V connector is a mono connector, but is stereo inside the R-10.
2) Standard CI-V level converter functions with CI-V software if plugged into the CI-V jack. (normal operation)
3) Standard CI-V level converter functions with CI-V software if pins are swapped and plugged into the speaker jack.
4) The OPC-478 functions in the CI-V jack if pins are swapped.

�IC-R10 Jack Pinouts:

Speaker

Tip: AF out
Center: CI-V Data
Ring: Ground

CI-V

Tip: CI-V Data
Center: ?
Ring: Ground
�Icom Cloning Software .ICF datafile format

These data formats are stored in Icom's CSR10 cloning software datafiles. Once decrypted, the data fields are wrapped in CI-V headers and sent to the R-10 during cloning operations.

Wording Conventions:

Frame:	A single Icom CI-V command frame.
Line:	A single .ICF datafile line.
Character:	A single 8 bit character in the .ICF datafile.
Byte:	An 8 bit number in ASCII represented Hexidecimal.
ASCII represented Hexidecimal: The method used to represent data to the IC-R10. Each 2 character group is an ASCII string literal representing an unsigned 8 bit hexidecimal number.

Example:
To produce the number 254 in ASCII represented Hexidecimal.
254 = 0xFE
FE must be converted to ‘F’ ‘E’.
‘F’ = ASCII 46, ‘E’ = ASCII 45.
The ASCII represented Hexidecimal of 254 is ‘4645’.

Notes:
This listing is not comprehensive. There are a few fields left to decode.

All frequency descriptions are in hexidecimal unless otherwise noted.
1200.00000 = [C0000000]

The memory address field and payload length field are in every CI-V frame sending data. Control frames do not carry these fields. Each line in the .ICF datafile increments this address and sets the payload length to 32 bytes.

The memory address field tells the R10 where to place data within it's own memory. The CI-V codes sent are the same for all types of data blocks. Data can be sent to the R10 in any order, it is not limited to a full sequential cloning operation. There is no limitation in how the data is addressed as long as the payload length, memory address and checksum are correct.

The frame checksum is a two's complement in ASCII represented Hexidecimal.

All Payload and Data fields are in ASCII represented Hexidecimal.

�Checksums:

Checksum information is not contained in the .ICF files, but will be described here since it is technically not part of the CI-V framing.

All payload data blocks are checksum
m
ed.
Payload checksums are calculated with two’s complement method.
Method:
The checksum is calculated on memory address, payload length and payload data.
Data is broken into 2 byte ASCII represented hexidecimal.
Each successive representation is added to the previous one.
At the end of the payload, the data is subtracted from 0x100. (assuming you have used an 8 bit data type such as unsigned char.)
The resulting number is the checksum.
The checksum is converted into ASCII represented Hexidecimal and inserted at the end of the payload in a frame.
�.ICF Datafile Layout:

To get at the real data that is sent via CI-V commands to program the radio, follow this procedure:

1) Skip the first two lines in the .ICF datafile.
1) Read each line of .ICF data.
2) Strip the CR/LF at the end.
Subtract 55 from each character in the line.
 (ie: g='0'=0x30, h='1'=0x31, i='2'=0x32, etc.)

Note: Remember that for this document, ‘byte’ refers to a two character ASCII represented Hexidecimal number and ‘character’ refers to a single character in the .ICF datafile.

The first six characters of each line are header data consisting of a two byte memory address and a one byte payload data length.

The .ICF files are formatted for 32 bytes of data per line. This means that the memory address will be incremented by 0x20 and payload length will be set to 0x20.

The 32 byte length of data is an arbitrary one. It is not a requirement of the cloning protocol. As long as the memory address, payload and checksum are valid, any number of bytes from 1-255 can be sent at a time.

Note: In sending one byte to the IC-R10, two memory locations are actually being modified due to two characters representing one byte.

The rest of the data in the line is the actual cloning data. It is in ASCII represented Hexidecimal format.

Note: The .ICF datafiles do not have the CI-V command framing, it is data only. The CI-V cloning codes are described at the end of this document.

Channels are laid out in linear form, 0-999, no bank information is in the datafile other than labels.

A few lines have mixed data in them. They do not all finish a data set at the end of a line.

�The .ICF datafile is formatted by lines.

Line Contents

001 Comment - Contains the code used to initiate clonein and cloneout operations.
002 Comment - Contains the user comment field in ASCII.
003-127 Channel Frequency data
128-130
131-380 Channel Label Data
381-386
387-391 Program Scan Edge Frequency Data
392-393 Easy Bank Frequency Data
394-399 Auto Mode Edge Frequency Data
400-402
403-412 Program Scan Edge Label, Mode, Delay, Tuning Step Data
413-417 Easy Bank Label, Mode, Delay, Tuning Step Data
418
419-427 Bank Label Data
428-434
435-466 Channel Mode Data
467-476
477 Radio ID Field
478-482
483-490 Auto Mode Edge Mode Data
491-497
498 Priority Frequency Data
499 VFO Frequency Data + Common Data
500 Common Data
501
502-505
506 User Comment Field, ID Field

Blank fields may be either unknown or padding. They contain nothing but zeroes.
�.ICF Datafile Line Details:

Comment - ID Field: .ICF Line 1

aaaaaaaa

Comment.

This is plain ASCII text.

It is duplicated in the last data block in CI-V encoded payload format.
This is an ASCII representation of the code that is sent to the radio to initiate the clonein and cloneout operations.

Example:

aaaaaaaa
18910001

--

Comment - User Comment Field: .ICF Line 2

aaaaaaaaaaaaaaaa

Comment.

This is plain ASCII text

This is the user comment field in plain ASCII.
It is duplicated in the last data block in CI-V encoded payload format. It also contains ‘Illegal file format’ and terminates the file if a file has bad data in it.

Example:

 aaaaaaaaaaaaaaaa
#User Comment

�Channel Frequency Data: .ICF Lines 3-127

aaaabbccccccccddddddddeeeeeeeeffffffffgggggggghhhhhhhhiiiiiiiijjjjjjjj

a = Memory address
b = 32 byte payload length, '20'
c = ASCII Frequency Data
d = ASCII Frequency Data
e = ASCII Frequency Data
f = ASCII Frequency Data
g = ASCII Frequency Data
h = ASCII Frequency Data
i = ASCII Frequency Data
j = ASCII Frequency Data

Example:

aaaabbccccccccddddddddeeeeeeeeffffffffgggggggghhhhhhhhiiiiiiiijjjjjjjj
0020201198000012140000124500001249000012785000128500003816000012430000

[0020] Memory address
[20] 32 byte payload length, '20'
[11980000] 119.80000 MHz
[12140000] 121.40000 MHz
[12450000] 124.50000 MHz
[12490000] 124.90000 MHz
[12785000] 127.85000 MHz
[12850000] 128.50000 MHz
[38160000] 381.60000 MHz
[12430000] 124.30000 MHz
�Channel Labels: .ICF Lines 131-380

aaaabbccccccccccccccccddddddddddddddddeeeeeeeeeeeeeeeeffffffffffffffff

a = Memory address
b = 32 byte payload length, '20'
c = ASCII Label Data
d = ASCII Label Data
e = ASCII Label Data
f = ASCII Label Data

Example:

aaaabbccccccccccccccccddddddddddddddddeeeeeeeeeeeeeeeeffffffffffffffff
100020456D72676E6379204C415820362F32344C415820362F32344C415820372F3235

[1000] Memory address
[20] 32 byte payload length, '20'
[456D72676E637920] decodes to ASCII 'Emrgncy '
[4C415820362F3234] decodes to ASCII 'LAX 6/24'
[4C415820362F3234] decodes to ASCII 'LAX 6/24'
[4C415820372F3235] decodes to ASCII 'LAX 7/25'

Decoding labels:

Data is represented in hexidecimal.
ASCII codes for each label directly correspond with the text.

Example: 456D72676E637920 is broken down to 45 6D 72 6E 63 79 20.
The ascii representation of these bytes is: 'Emrgncy '
�Program Scan Edge Frequency Data: .ICF Lines 387-391
Easy Bank Frequency Data: .ICF Lines 392-first half of 394

aaaabbccccccccddddddddeeeeeeeeffffffffgggggggghhhhhhhhiiiiiiiijjjjjjjj

a = Memory address
b = 32 byte payload length, '20'
c = ASCII Frequency Data
d = ASCII Frequency Data
e = ASCII Frequency Data
f = ASCII Frequency Data
g = ASCII Frequency Data
h = ASCII Frequency Data
i = ASCII Frequency Data
j = ASCII Frequency Data

Example:

aaaabbccccccccddddddddeeeeeeeeffffffffgggggggghhhhhhhhiiiiiiiijjjjjjjj
3000200005000002999500030000000499950005000000053995000880000010790000

[3000] Memory address
[20] 32 byte payload length, '20'
[00050000] Start Frequency
[02999500] End Frequency
[03000000] Start Frequency
[04999500] End Frequency
[05000000] Start Frequency
[05399500] End Frequency
[08800000] Start Frequency
[10790000] End Frequency
�Auto Mode Edge Frequency Data:
 .ICF Lines second half of 394-399

aaaabb--------------------------------ccccccccccddddddddddeeeeeeeeeeff
aaaabbffffffffgggggggggghhhhhhhhhhiiiiiiiiiijjjjjjjjjjkkkkkkkkkkllllll
...etc

a = Memory address
b = 32 byte payload length, '20'
c-l = ASCII Frequency Data

NOTE: The ASCII frequencies in this section are in DECIMAL, not a hex
 representation, like the other sections. 12 = 12, not 0x0B.

 The data is not bound by each line. It wraps around to the next
 line to continue the 10 byte fields.

Example:

First Line:
aaaabb--------------------------------ccccccccccddddddddddeeeeeeeeeeff
30E02000050000D000000000050000D000000001299999500129999990000300000000

[30E0]
[20]
[00050000D000000000050000D0000000] = (Easy Bank Data)
[0129999950] = 1299.99950 MHz Start
[0129999990] = 1299.99990 MHz End
[0003000000] = 30.00000 MHz Start
[00 = Continued in next line

Second Line:
aaaabbffffffffgggggggggghhhhhhhhhhiiiiiiiiiijjjjjjjjjjkkkkkkkkkkllllll
3100200499950000050000000005399500000880100000107900000010800000001359

[3100] = Memory address
[20] = 32 byte payload length, '20'
 04999500] = 49.99500 MHz End. Continued from previous line.
[0005000000] = 50.00000 MHz Start
[0005399500] = 53.99500 MHz End
[0008801000] = 88.01000 MHz Start
[0010790000] = 107.90000 MHz End
[0010800000] = 108.00000 MHz Start
[001359 = Continued in next line.

etc.
�Program Scan Edge Label, Mode, Scan Delay, Tuning Step:
 .ICF Lines 403-412
Easy Bank Label, Mode, Scan Delay, Tuning Step Data:
 .ICF Lines 413-417

aaaabbccccccccccccccccddeeffgghhhhhhiijjjjjjjjjjjjjjjjkkllmmnnoooooopp

a = Memory address
b = 32 byte payload length, '20'
c,k = Label Data
d,l =
e,m = Mode
f,n = Scan Delay
g,o = Tuning Step
h,q = User Frequency

Mode Table Tuning Step Table Scan Delay Table

00 = FM 00 = 0.1 kHz 00 = 5 Seconds
01 = WFM 01 = 0.5 kHz 01 = 10 Seconds
02 = AM 02 = 1.0 kHz 02 = Pause
03 = LSB 03 = 5.0 kHz
04 = USB 04 = 6.25 kHz
05 = CW 05 = 8.0 kHz
 06 = 9.0 kHz
 07 = 10.0 kHz
 08 = 12.5 kHz
 09 = 15.0 kHz
 0A = 20.0 kHz
 0B = 25.0 kHz
 0C = 30.0 kHz
 0D = 50.0 kHz
 0E = 100.0 kHz
 80 = User defined
�Example:

aaaabbccccccccccccccccddeeffgghhhhhhiijjjjjjjjjjjjjjjjkkllmmnnoooooopp
33602045617379426E6B32000202800098200045617379426E6B330003000900050000

[3360] Memory address
[20] 32 byte payload length, '20'
[45617379426E6B32] decodes to ASCII 'EasyBnk2' (45 61 73 79 42 6E 6B 32)
[00]
[02] AM
[02] 10 second scan delay
[80] User defined Tuning Step
[009820] Tuning step is 98.2kHz
[00]
[45617379426E6B33] decodes to ASCII 'EasyBnk3'
[00]
[03] LSB
[00] 5 second scan delay
[09] 15.0kHz tuning step
[000500] always is 000500 if no user defined tuning step.
[00]

--

Channel Bank Labels: .ICF Lines 419-427

aaaabbccccccccccccccccccccddddddddddddeeeeeeeeeeeeeeeeeeeeffffffffffff

a = Memory address
b = 32 byte payload length, '20'
c,e = Label Data
d,f =

Example:

aaaabbccccccccccccccccccccddddddddddddeeeeeeeeeeeeeeeeeeeeffffffffffff
350020414D575342616E6B4C62000000000000536B697042616E6B4C62000000000000

[3500] Memory address
[20] 32 byte payload length, '20'
[414D575342616E6B4C62] decodes to ASCII ('AMWSBankLb')
[000000000000]
[536B697042616E6B4C62] decodes to ASCII ('SkipBankLb')
[000000000000]
�Channel Mode Data: .ICF Lines 435-466

Linear channel arrangement.
32 channels per line.

aaaabbccddeeffgghhiijjkkllmmnnooppqqrrssttuuvvwwxxyyzzAABBCCDDEEFFGGHH

a = Memory address
b = 32 byte payload length, '20'
cc-HH = Channel Mode Data

Mode Data Table

x0 = FM
x1 = WFM
x2 = AM
x3 = LSB
x4 = USB
x5 = CW
2x = ATT
4x = Scan Skip
6x = Scan Skip + ATT
8x = Blank

Example:

aaaabbccddeeffgghhiijjkkllmmnnooppqqrrssttuuvvwwxxyyzzAABBCCDDEEFFGGHH
3620200202024280028000806080808080808080800080808080808080808080808080

[3620] Memory address
[20] 32 byte payload length, '20'
[02] AM
[02] AM
[02] AM
[42] AM + Scan Skip
[80] FM Blank
[02] AM
[80] FM Blank
[00] FM
[60] FM + ATT + Scan Skip
[80] FM Blank
...etc
�Radio ID Field: .ICF Line 477

aaaabbccccccccccccccccccccccccccccccccddddddddddddddddddddeeeeeeeeffff

a = Memory address
b = 32 byte payload length, '20'
c =
d = Date code ?
e = Manufacturer code ?
f = ?

Example:

aaaabbccccccccccccccccccccccccccccccccddddddddddddddddddddeeeeeeeeffff
3B4020000000000000000000000000000000003139393630383032313049434F4D2E2E

[3B40] = Memory address
[20] = 32 byte payload length, '20'
[00000000000000000000000000000000]
[31393936303830323130] = '1996080210' (31 39 39 36 30 38 30 32 31 30 in ASCII)
[49434F4D] = 'ICOM'
[2E2E] = '..' (This seems to always be '..')
�Auto Mode Edge Mode/Tuning Step Data: .ICF Lines 383-490

aaaabbccddeeffffffgggggggggggggggggggghhiijjkkkkkkllllllllllllllllllll

a = Memory address
b = 32 byte payload length, '20'
c =
d,i = Mode Data
e,j = Tuning Step Data
f,k = User Defined Tuning Step Data
g,l =

Example:

aaaabbccddeeffffffgggggggggggggggggggghhiijjkkkkkkllllllllllllllllllll
3C00200002030005000000000000000000000000008002350000000000000000000000

[3C00] = Memory address
[20] = 32 byte payload length, '20'
[00]
[02] = AM
[03] = 5 kHz Tuning Step
[000500] = User Defined Tuning Step default 5 kHz
[00000000000000000000]
[00]
[00] = FM
[80] = User Defined Tuning Step
[023500] = 235 kHz Tuning Step
[00000000000000000000]

Mode Table Tuning Step Table

00 = FM 00 = 0.1 kHz
01 = WFM 01 = 0.5 kHz
02 = AM 02 = 1.0 kHz
03 = LSB 03 = 5.0 kHz
04 = USB 04 = 6.25 kHz
05 = CW 05 = 8.0 kHz
 06 = 9.0 kHz
 07 = 10.0 kHz
 08 = 12.5 kHz
 09 = 15.0 kHz
 0A = 20.0 kHz
 0B = 25.0 kHz
 0C = 30.0 kHz
 0D = 50.0 kHz
 0E = 100.0 kHz
 80 = User defined
�Priority Frequency Data: .ICF Line 498

aaaabbccccccccccccccccccccccccccddddddeeeeeeee
ee
ffgghh
iiiiiiiiiiiiiiii

a = Memory address
b = 32 byte payload length, '20'
c =
d = User Defined Tuning Step Data
e = ASCII Frequency Data

f
 = ATT

g
 = Mode

h
 = NB/ANL

i
 =

Mode Table ATT Table NB/ANL Table

00 = FM 00 = Off 00 = Off
01 = WFM 20 = On 40 = On
02 = AM
04 = USB
05 = CW

Example:

aaaabbccccccccccccccccccccccccccddddddeeeeeeee
ee
ffgghh
iiiiiiiiiiiiiiii

3DE0200000000000000000000000000000273000121500000002000000000000000000

[3DE0] = Memory address
[20] = 32 byte payload length, '20'
[00000000000000000000000000]
[002730] = 27.3 kHz user defined tuning step
[00121500
00
] = 121.5 MHz priority frequency

[00] = ATT off
[02] = AM
[00] = NB/ANL off
[0000000000000000]

Note:
Frequency data is in DECIMAL notation, not HEXIDECIMAL for Priority and VFO data.

�VFO Frequency Data: .ICF Line 499

aaaabbccccccccccddeeffgggggggggggggggghhhhhhhhhhiijjkkllllllmmmmmmmmnn

a = Memory address
b = 32 byte payload length, '20'
c = ASCII Frequency Data
d = ATT
e = Mode
f = Tuning Step
g =
h = Repeat of ASCII Frequency Data
i = Repeat of ATT
j = Repeat of Mode
k = Repeat of Tuning Step
l = User Defined Tuning Step Data
m =
n = VSC/NB/ANL/AFC Common Data

Mode Table Tuning Step Table ATT Table

00 = FM 00 = 0.1 kHz 00 = Off
01 = WFM 01 = 0.5 kHz 01 = On
02 = AM 02 = 1.0 kHz
03 = LSB 03 = 5.0 kHz
04 = USB 04 = 6.25 kHz VSC/NB/ANL/AFC Table
05 = CW 05 = 8.0 kHz
06 = Auto 06 = 9.0 kHz 20 = AFC
 07 = 10.0 kHz 40 = NB/ANL
 08 = 12.5 kHz 60 = AFC + NB/ANL
 09 = 15.0 kHz 80 = VSC
 0A = 20.0 kHz A0 = AFC + VSC
 0B = 25.0 kHz C0 = NB/ANL + VSC
 0C = 30.0 kHz E0 = AFC + NB/ANL + VSC
 0D = 50.0 kHz
 0E = 100.0 kHz
 40 = Auto
 80 = User defined
�Example:

aaaabbccccccccccddeeffgggggggggggggggghhhhhhhhhhiijjkkllllllmmmmmmmmnn
3E0020008239650020000D0000000000000000008239650020000D0999900000000000

[3E00] = Memory address
[20] = 32 byte payload length, '20'
[0082396500] = ASCII Frequency Data
[20] = ATT
[00] = FM
[0D] = 50.0 kHz Tuning Step
[0000000000000000]
[0082396500] = Repeat of ASCII Frequency Data
[20] = Repeat of ATT
[00] = Repeat of FM
[0D] = Repeat of 50.0 kHz Tuning Step
[099990] = 999.9 User Defined Tuning Step
[00000000]
[00] = VSC/NB/ANL/AFC off

Note:
Frequency data is in DECIMAL notation, not HEXIDECIMAL for Priority and VFO data.

--

Common Data: .ICF Line 500

aaaabbccccccccccccccccccccccccccccccccddeeffgghhiijjkkllllmmnnoopppppp

a = Memory address
b = 32 byte payload length, '20'
c =
d = Opening Message
e = Beep
f = LCD Contrast
g = Backlight
h = Program Scan Skip
i = Memory Scan Skip
j = Power Save
k = Scan Delay
l =
m = CI-V address
n = CI-V baud
o = CI-V transceive

CI-V Address is in ASCII represented Hexidecimal.

�CI-V Tranceive Table CI-V Baud Table Backlight Table
Opening Message Table
Memory Skip Scan Table 00 = 300 00 = Off
Program Skip Scan Table 01 = 1200 01 = 5 Seconds
Beep Table 02 = 4800 02 = On
 03 = 9600
00 = Off 04 = 19200
01 = On

LCD Contrast Table Power Save Table Scan Delay Table

00 = Low 00 = Off 00 = 5 Seconds
01 = Mid-Low 01 = 1:4 01 = 10 Seconds
02 = Mid-High 02 = 1:16 02 = Pause
03 = High

Example:

aaaabbccccccccccccccccccccccccccccccccddeeffgghhiijjkkllllmmnnoopppppp
3E20200000000000000000000000000000000000010200000101020000520301000000

[3E20] = Memory address
[20] = 32 byte payload length, '20'
[00000000000000000000000000000000]
[00] = No opening message
[01] = Beep on
[02] = LCD Contrast Mid-High
[00] = Backlight off
[00] = Program Scan Skip off
[01] = Memory Scan Skip on
[01] = Power Save 1:4
[02] = Scan Delay Pause
[0000]
[52] = CI-V Address 0x52
[03] = CI-V Baud 9600
[01] = CI-V Transceive on
[000000]
�User Comment + Id Field: .ICF Line 506

aaaabbcccccccccccccccccccccccccccccccdddddddddddddddddeeeeeeeeeeeeeeee

a = Memory address
b = 32 byte payload length, '20'
c = User Comment
d =
e = ID Field

Example:

aaaabbccccccccccccccccccccccccccccccccddddddddddddddddeeeeeeeeeeeeeeee
3EE0205573657220436F6D6D656E742020202000000000000000003138393130303031

[3EE0] = Memory address
[20] = 32 byte payload length, '20'
[5573657220436F6D6D656E7420202020] = User Comment decodes to 'User Comment '(55 73 65 72 20...)
[0000000000000000]
[3138393130303031] = ID Field. This is the same code used to initiate a clonein and cloneout operation.
�IC-R10 Memory Map:

Address�Contents�Field Lengths��0000-0F9F�Channel Frequency Data�4��0FA0-0FFF�Blank���1000-2F3F�Channel Label Data�8��2F40-2FFF�Blank���3000-309F�Program Scan Edge Frequency Data�4��30A0-30EF�Easy Bank Frequency Data�4��30F0-319F�Auto Mode Frequency Data�5��31A0-31FF�Blank���3200-333F�Program Scan Edge Label Data�8,1,1,1,1,3��3340-33DF�Easy Bank Label Data�8,1,1,1,1,3��33E0-33FF�Blank���3400-351F�Bank Label Data�10,6��3520-35FF�Blank���3600-39FF�Channel Mode Data�1��3A00-3B4F�Blank���3B50-3B5F�Radio ID Field�16��3B60-3BFF�Blank���3C00-3CFF�Auto Mode Edge Data�1,1,1,3,10��3D00-3DEC�Blank���3DED-3DEF�User defined tuning step�3��3DF-3DF4�Priority Frequency Data�5��3DF5�Priority ATT�1��3DF6�Priority Mode�1��3DF7�Priority NB/ANL�1��3DF8-3DFF�Blank���3E00-3E04�VFO Frequency Data�5��3E05�VFO ATT�1��3E06�VFO Mode�1��3E07�VFO Tuning Step�1��3E08-3E0F�Blank���3E10-3E14�Repeat of VFO Frequency Data�5��3E15�Repeat of VFO ATT�1��3E16�Repeat of VFO Mode�1��3E17�Repeat of VFO Tuning Step�1��3E18-3E1A�VFO User Defined Tuning Step�3��3E1B-3E1E�Blank���3E1F�VSC/NB/ANL/AFC Common Data�1��3E20-3E2F�Blank���3E30�Opening Message Flag�1��3E31�Beep�1��
�

Address
�
Contents
�
Field Length
�
�
3E32�LCD Contrast�1�
�
3E33�Backlight�1�
�
3E34�Program Scan Skip�1�
�
3E35�Memory Scan Skip�1�
�
3E36�Power Save�1�
�
3E37�Scan Delay�1�
�
3E38-3E39�Blank��
�
3E3A�CI-V Address�1�
�
3E3B�CI-V Baud�1�
�
3E3C�CI-V Transceive�1�
�
3E3D-3E5F�Blank��
�
3E60-3EDF�Unknown��
�
3EE0-3EEF�User Comment Field�16�
�
3EF0-3EF7�Blank��
�
3EF8-3EFF�ID Field�8�
�

Field lengths refer to the number of memory locations used per field.
One memory location = Two character hexidecimal representation of 8 bits.

�IC-R10 Cloning data codes:

E0 = Interrogate radio for version/model/user comment.

Example:
FE FE EE EF E0 18 91 00 00 FD

Returns:
FE EF EE E1 18 91 00 01 01 02 ... FD (US model)

--

E1 = Return Code.

Example:
FE EF EE E1 18 91 00 01 01 02 ... FD (US Interrogation return code)

--

E2 = Set radio into "Clone out" mode. Memory Read.

Example:
FE FE EE EF E2 18 91 00 01 FD

--

E3 = Set radio into "Clone in" mode. Memory Write.

Example:
FE FE EE EF E3 18 91 00 01 FD
�E4 = Payload write. Send contents to radio memory.

Example:
FE FE EE EF E4 aaaa bb cc [cc...cc] dd FD

aa = Memory address
bb = payload length in ASCII represented Hexidecimal. '20' for the 32 byte payload in .ICF files. (32 bytes represented by 64 ASCII characters.)
cc = ASCII represented Hexidecimal payload data. There must be between 1 and 255 represented bytes. Each payload byte is actually two pieces of information in the radio, the represented MSN and LSN of the 8 bit byte.
dd = Two's complement checksum in ASCII represented Hexidecimal.
 Checksum is calculated on payload data only. CI-V framing info is
 not used in the calculation. Payload data includes the memory address
 and payload length field.

Although the .ICF files are formatted for 32 byte payloads, it is possible to write a single byte to the radio.

Example: FE FE EE EF E4 30 30 30 32 30 31 34 35 42 38 FD
Memory address = 0002
Payload length = 01
Payload = 45
Checksum = 28

This will change the frequency of memory #1 to xxx.x45x MHz since byte 2 corresponds to the 10 and 1 kHz portion of the R10 memory map.

Memory address 00112233

 xxxx45xx

In order for any cloning operation to complete, the termination code must be sent.

E5 = Termination code

Example:
FE FE EE EF E5 49 63 6F 6D 20 49 6E 63 2E FD

This is what Icom sends at the end of a cloning operation. It is used to tell the radio when to stop a cloning operation. It must be sent after any cloning operation or an error is returned.

�E6 nn = Completion code

E6 00 = Completed with no errors
E6 01 = Error

Example:
FE FE EF EE E6 01 FD

This code is returned after cloning operations.

�
IC-R10 Modifications

The IC-R10 comes in 3 basic versions:

Version		Frequency Range in MHz

United States	.5000-823.9999, 849.0001-868.9999, 894.0001-1300.0000
Europe		.5000-1300.000
France		.5000-87.5000, 108.0000-1300.0000

There are two resistor pads on the CPU board. One up by the speaker, one down by the charge switch.
The resistors are 10k in a 0603 SMD package, labeled ‘103’.
These parts are available from Icom, part #3GEYJ10K.

United States Version:	Both pads open.
European Version:		Both resistors installed.
French Version:		Unknown.

�

�Appendix:

Items left to research:

Memory writes take place when the radio is in "clone mode". Is there a way to write memories without the (PWR)(V/M) sequence? Is there a way to set the radio into "clone mode" via software? Icom claims there is no way to do this.

�PAGE �

�PAGE �
5
�

Everything you always wanted to know about the IC-R10 that
isn't in the manual
...

� DATE �
07/08/97
�

Page

http://www.flash.net/~baptpdc/icommods.htm

